

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM[™] and SRAM, Traveo[™] microcontrollers, the industry's only PSoC[®] programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense[®] capacitive touch-sensing controllers, and Wireless BLE Bluetooth[®] Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

16-bit Microcontroller

CMOS

F²MC-16LX MB90335 Series MB90337/F337/V330A

DESCRIPTION

The MB90335 series are 16-bit microcontrollers designed for applications, such as personal computer peripheral devices, that require USB communications. The USB feature supports not only 12-Mbps Function operation but also HOST operation. It is equipped with functions that are suitable for personal computer peripheral devices such as displays and audio devices, and control of mobile devices that support USB communications. While inheriting the AT architecture of the F²MC* family, the instruction set supports the C language and extended addressing modes and contains enhanced signed multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, long word processing is now available by introducing a 32-bit accumulator.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

Clock

- Built-in oscillation circuit and PLL clock frequency multiplication circuit
- Oscillation clock
- The main clock is the oscillation clock divided into 2 (for oscillation 6 MHz : 3 MHz)
- Clock for USB is 48 MHz
- Machine clock frequency of 6 MHz, 12 MHz or 24 MHz selectable
- Minimum execution time of instruction : 41.7 ns (6 MHz oscillation clock, 4-time multiplied : machine clock 24 MHz and at operating $V_{CC} = 3.3 \text{ V}$)
- The maximum memory space: 16 Mbytes
- 24-bit addressing
- Bank addressing

(Continued)

For the information for microcontroller supports, see the following web site.

This web site includes the **"Customer Design Review Supplement"** which provides the latest cautions on system development and the minimal requirements to be checked to prevent problems before the system development.

http://edevice.fujitsu.com/micom/en-support/

Instruction system

- Data types: Bit, Byte, Word, Long word
- Addressing mode (23 types)
- Enhanced high-precision computing with 32-bit accumulator
- Enhanced Multiply/Divide instructions with sign and the RETI instruction

• Instruction system compatible with high-level language (C language) and multi-task

- Employing system stack pointer
- · Instruction set symmetry and barrel shift instructions

• Program Patch Function (2 address pointer)

- 4-byte instruction queue
- Interrupt function
 - Priority levels are programmable
 - 20 interrupts function

Data transfer function

- Extended intelligent I/O service function (EI2OS) : Maximum of 16 channels
- µDMAC : Maximum 16 channels

• Low Power Consumption Mode

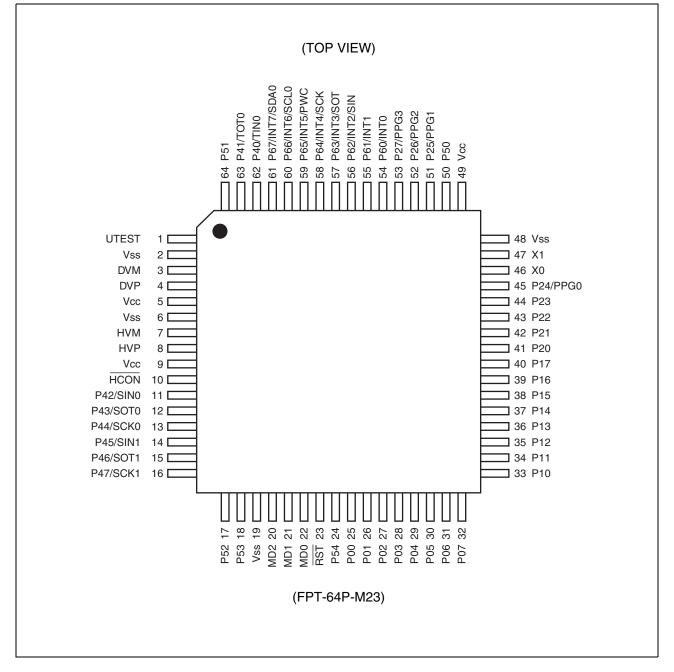
- Sleep mode (with the CPU operating clock stopped)
- Time-base timer mode (with the oscillator clock and time-base timer operating)
- Stop mode (with the oscillator clock stopped)
- CPU intermittent operation mode (with the CPU operating at fixed intervals of set cycles)
- Package
 - LQFP-64P (FPT-64P-M23 : 0.65 mm pin pitch)
- Process : CMOS technology
- Operation guaranteed temperature: 40 °C to + 85 °C (0 °C to + 70 °C when USB is in use)

- Internal peripheral function (resource)
 - I/O port : Max 45 ports
 - Time-base timer : 1channel
 - Watchdog timer : 1 channel
 - 16-bit reload timer : 1 channel
 - Multi-functional timer
 - 8/16-bit PPG timer (8-bit × 4 channels or 16-bit × 2 channels) the period and duty of the output pulse are freely programmable.
 - 16-bit PWC timer : 1 channel
 - Timer function and pulse width measurement function
 - UART: 2 channels
 - Equipped with a full duplex (8-bit long) double buffer
 - Selectable asynchronous transfer or clock-synchronous serial (extended I/O serial) transfer.
 - Extended I/O serial interface : 1 channel
 - DTP/External interrupt circuit (8 channels)
 - · Activate the extended intelligent I/O service by external interrupt input
 - Interrupt output by external interrupt input
 - Delayed interrupt output module
 - Outputs an interrupt request for task switching
 - USB: 1 channel
 - USB function (supports USB Full Speed)
 - Supports Full Speed/Up to 6 endpoints can be specified.
 - Dual port RAM (supports FIFO mode).
 - Transfer type: Control, Interrupt, Bulk or Isochronous transfer possible
 - USB HOST function
 - I²C Interface: 1 channel
 - Supports Intel SM bus standards and Phillips I²C bus standards
 - Two-wire data transfer protocol specification
 - Master and slave transmission/reception

■ PRODUCT LINEUP

Part number	MB90V330A	MB90F337	MB90337			
Туре	For evaluation	Built-in Flash Memory	Built-in MASK ROM			
ROM capacity	No	64 Kbytes				
RAM capacity	28 Kbytes	4 Kbytes				
Emulator-specific power supply *	Used bit	—				
CPU functions	Number of basic instructions Minimum instruction execution time Addressing type Program Patch Function Maximum memory space	 s : 351 instructions : 41.7 ns / at oscillation of 6 MHz (When 4 times are used : Machine clock of 24 MH : 23 types : For 2 address pointers : 16 Mbytes 				
Ports	I/O Ports(CMOS) Max 45 por	ts				
UART	Equipped with full-duplex dou Clock synchronous or asynch It can also be used for I/O se Built-in special baud-rate ger Built-in 2 channels	nronous operation selectable rial.	e.			
16-bit reload timer	16-bit reload timer operation Built-in 1 channel					
Multi-functional timer	8/16-bit PPG timer (8-bit mod 16-bit PWC timer \times 1 channe		e × 2 channels)			
DTP/External interrupt	8 channels Interrupt factor : "L"→"H" edg	le /"H"→"L" edge /"L" level /'	'H" level selectable			
l ² C	1 channel					
Extended I/O serial interface	1 channel					
USB	1 channel USB function (supports USB Full Speed) USB HOST function					
Withstand voltage of 5 V	8 ports (Excluding UTEST ar	nd I/O for I ² C)				
Low Power Consumption Mode	Sleep mode/Timebase timer	Sleep mode/Timebase timer mode/Stop mode/CPU intermittent mode				
Process	CMOS					
Operating voltage Vcc	3.3 V \pm 0.3 V (at maximum m	achine clock 24 MHz)				

*: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply Switching) about details.


■ PACKAGES AND PRODUCT MODELS

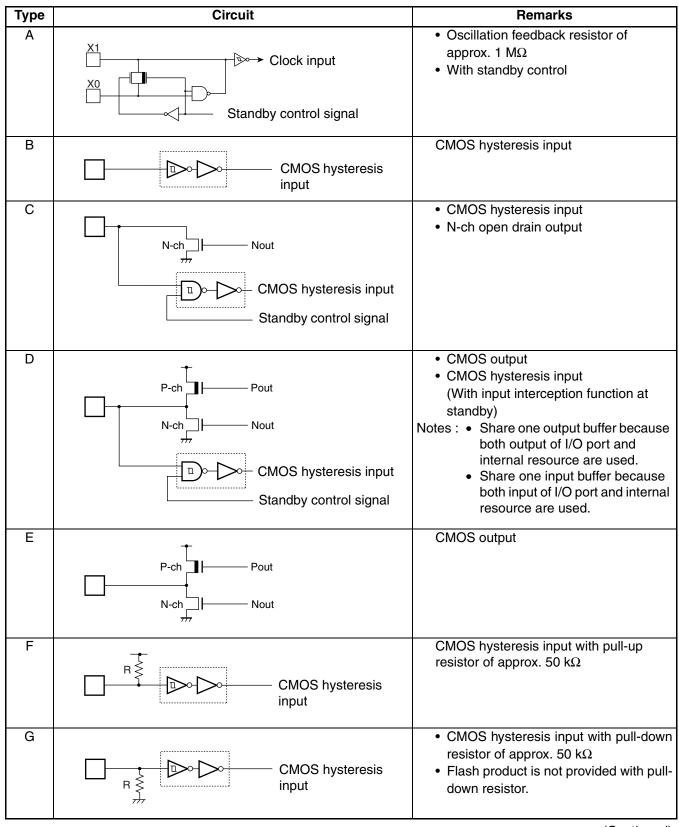
Package	MB90337	MB90F337	MB90V330A
FPT-64P-M23 (LQFP)	0	0	Х
PGA-299C-A01 (PGA)	X	X	0

 \bigcirc : Yes \times : No

Note : See "■ PACKAGE DIMENSIONS" for details.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION


Pin no.	Pin name	I/O Circuit type*	Status at reset/ function	Function
46 , 47	X0, X1	А	Oscillation status	It is a terminal which connects the oscillator. When connecting an external clock, leave the X1 pin side unconnected.
23	RST	F	Reset input	External reset input pin.
25 to 32	P00 to P07	I		General purpose input/output port. The ports can be set to be added with a pull-up resistor (RD00 to RD07 = 1) by the pull-up resistor setting register (RDR0). (When the power output is set, it is invalid.)
33 to 40	P10 to P17	I		General purpose input/output port. The ports can be set to be added with a pull-up resistor (RD10 to RD17 = 1) by the pull-up resistor setting register (RDR1). (When the power output is set, it is invalid.)
41 to 44	P20 to P23	D		General purpose input/output port.
45	P24	D		General purpose input/output port.
-10	PPG0			Functions as output pins of PPG timers ch.0.
51 to 53	P25 to P27	D		General purpose input/output port.
51 10 55	PPG1 to PPG3			Functions as output pins of PPG timers ch.1 to ch.3.
62	P40	н		General purpose input/output port.
02	TINO			Function as event input pin of 16-bit reload timer.
63	P41	н		General purpose input/output port.
00	TOT0		Port input	Function as output pin of 16-bit reload timer.
11	P42	н	(Hi-Ż)	General purpose input/output port.
	SIN0			Functions as a data input pin for UART ch.0.
12	P43	н		General purpose input/output port.
12	SOT0			Functions as a data output pin for UART ch.0.
13	P44	н		General purpose input/output port.
10	SCK0			Functions as a clock I/O pin for UART ch.0.
14	P45	н		General purpose input/output port.
17	SIN1			Functions as a data input pin for UART ch.1.
15	P46	н		General purpose input/output port.
10	SOT1			Functions as a data output pin for UART ch.1.
16	P47	н		General purpose input/output port.
	SCK1			Functions as a clock I/O pin for UART ch.1.
50	P50	К		General purpose input/output port.
64	P51	К		General purpose input/output port.
17, 18	P52, P53	К		General purpose input/output port.
24	P54	К		General purpose input/output port.

(Continued)

Pin no.	Pin name	I/O Circuit type*	Status at reset/ function	Function	
	P60, P61	С		General purpose input/output port (withstand voltage of 5 V).	
54, 55	INT0, INT1			Functions as the input pin for external interrupt ch.0 and ch.1.	
	P62			General purpose input/output port (withstand voltage of 5 V).	
56	INT2	С		Functions as the input pin for external interrupt ch.2.	
	SIN			Data input pin for extended I/O serial interface.	
	P63			General purpose input/output port (withstand voltage of 5 V).	
57	INT3	С		Functions as the input pin for external interrupt ch.3.	
	SOT			Data output pin for extended I/O serial interface.	
	P64			General purpose input/output port (withstand voltage of 5 V).	
58	INT4 C			Functions as the input pin for external interrupt ch.4.	
	SCK		Port input	Clock I/O pin for extended I/O serial interface.	
	P65		(Hi-Z)	General purpose input/output port (withstand voltage of 5 V).	
59	INT5	С		Functions as the input pin for external interrupt ch.5.	
	PWC			Functions as the PWC input pin.	
	P66			General purpose input/output port (withstand voltage of 5 V).	
	INT6	с		Functions as the input pin for external interrupt ch.6.	
60	SCL0			Functions as the input/output pin for I ² C interface clock. The port output must be placed in Hi-Z state during I ² C interface operation.	
	P67			General purpose input/output port (withstand voltage of 5 V).	
61	INT7	с		Functions as the input pin for external interrupt ch.7.	
01	SDA0			Functions as the I ² C interface data input/output pin. The port output must be placed in Hi-Z state during I ² C interface operation.	
1	UTEST	С	UTEST input	USB test pin. Connect this to a pull-down resistor during normal usage.	
3	DVM	J		USB function D – pin.	
4	DVP	J	USB input	USB function D + pin.	
7	HVM	J	(SUSPEND)	USB HOST D – pin.	
8	HVP	J		USB HOST D + pin.	
10	HCON	E	High output	External pull-up resistor connection pin.	
21, 22	MD1, MD0	В	Mode input	Input pin for selecting operation mode.	
20	MD2	G		input pin for selecting operation mode.	
5, 9, 49	Vcc		Power	Power supply pin.	
2, 6, 19, 48	Vss		supply	Power supply pin (GND).	

* : For circuit information, refer to "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

(Continu		
Туре	Circuit	Remarks
н	P-ch P-ch P-ch P-ch P-ch Pout N-ch Nout M-ch Nout M-ch CMOS hysteresis input Standby control signal	 CMOS output CMOS hysteresis input (With input interception function at standby) With open drain control signal
I	Control signal R P-ch Pout N-ch Nout M-ch CMOS input Standby control signal	 CMOS output CMOS input (With input interception function at standby) Programmable input pull-up resistor
J	D + input D - input Differential input Full D + output Full D - output Low D + output Low D - output Direction Speed	USB I/O pin
К	P-ch Pout N-ch Nout 777 CMOS input Standby control signal	 CMOS output CMOS input (With input interception function at standby)

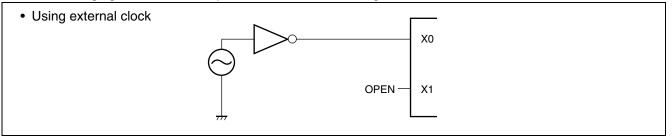
HANDLING DEVICES

1. Preventing latch-up and turning on power supply

latch-up may occur on CMOS IC under the following conditions:

- If a voltage higher than Vcc or lower than Vss is applied to input and output pins.
- A voltage higher than the rated voltage is applied between Vcc and Vss.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements. When using CMOS IC, take great care to prevent the occurrence of latch-up.


2. Treatment of unused pins

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leading to permanent damage. Unused input pins should always be pulled up or down through resistance of at least 2 k Ω . Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it to open.

3. About the attention when the external clock is used

Even when using an external clock signal, an oscillation stabilization delay is applied after a power-on reset or when recovering from sub-clock or stop mode. When suing an external clock, 25 MHz should be the upper frequency limit.

The following figure shows a sample use of external clock signals.

4. Treatment of power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.

It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μF between Vcc and Vss pins near this device.

5. About crystal oscillator circuit

Noise near the X0 and X1 pins may cause the device to malfunction. Design the printed circuit board so that X0, X1, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended to design the PC board artwork with the X0 and X1 pins surrounded by ground plane because stable operation can be expected with such a layout.

Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

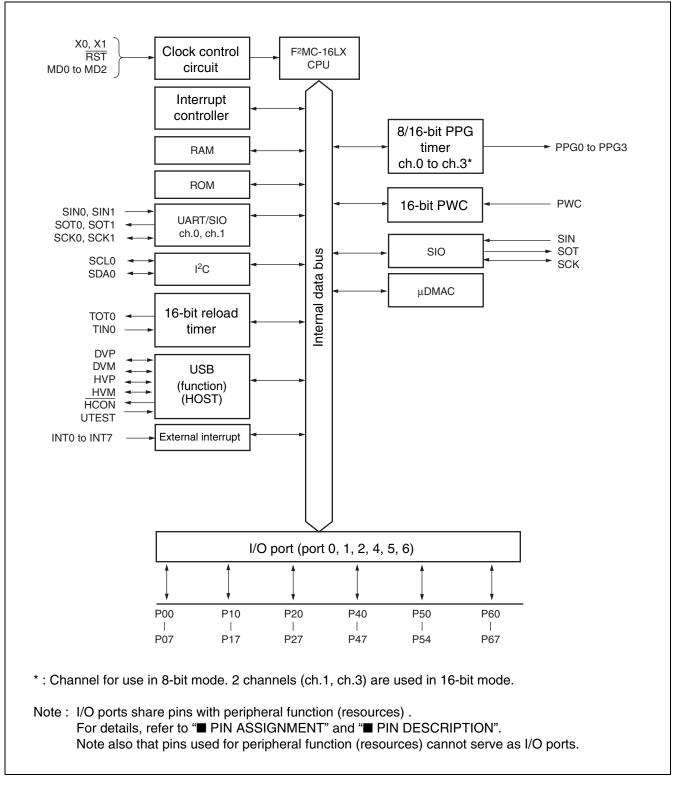
6. Caution on Operations during PLL Clock Mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu will not guarantee results of operations if such failure occurs.

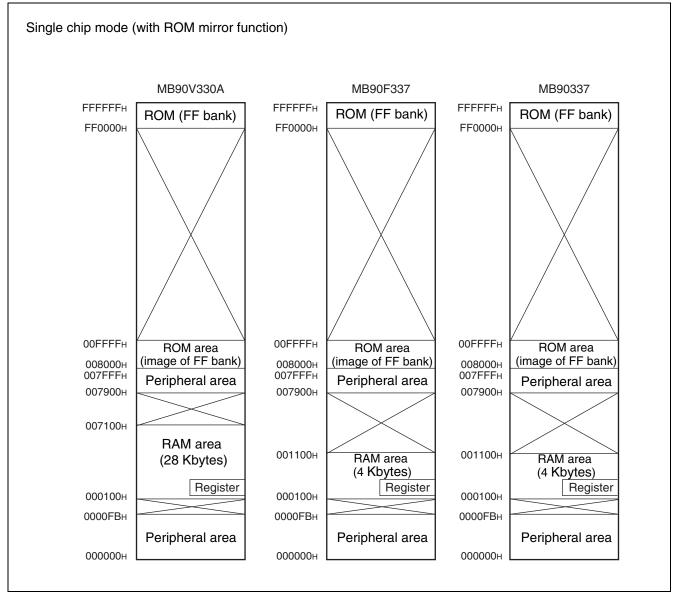
7. Stabilization of supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the V_{CC} supply voltage operating range. For stabilization reference, the supply voltage should be stabilized so that V_{CC} ripple variations (peak-to-peak value) at commercial frequencies (50 MHz to 60 MHz) fall below 10% of the standard V_{CC} supply voltage and the transient regulation does not exceed 0.1 V/ms at temporary changes such as power supply switching.

8. Writing to flash memory

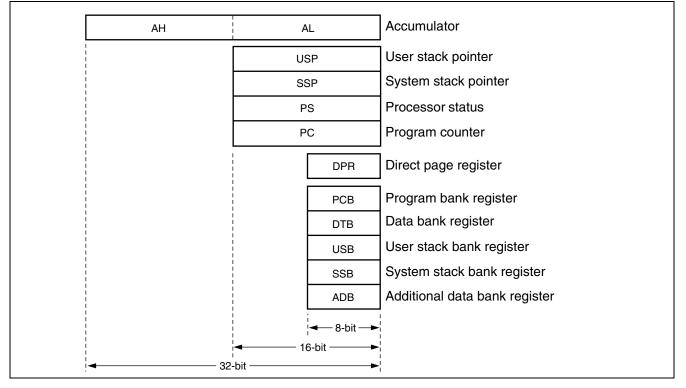

For serial writing to flash memory, always make sure that the operating voltage V_{CC} is between 3.13 V and 3.6 V. For normal writing to flash memory, always make sure that the operating voltage V_{CC} is between 3.0 V and 3.6 V.

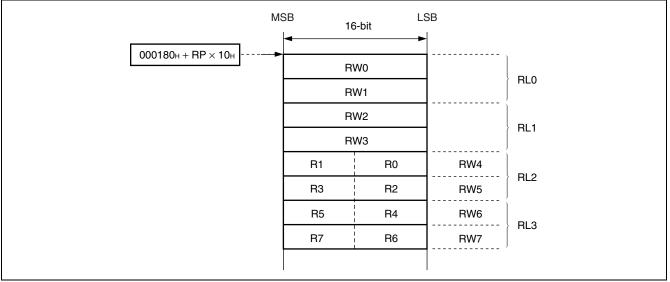
9. Serial communication


There is a possibility to receive wrong data due to noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise.

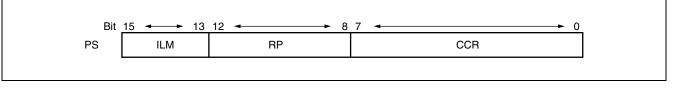
Consider receiving of wrong data when designing the system. For example, apply a checksum to detect an error. If an error is detected, retransmit the data.

BLOCK DIAGRAM


MEMORY MAP


- Notes : When the ROM mirror function register has been set, the mirror image data at higher addresses ("FF8000_H to FFFFFH") of bank FF is visible from the higher addresses ("008000_H to 00FFFFH") of bank 00.
 - The ROM mirror function is effective for using the C compiler small model.
 - The lower 16-bit addresses of bank FF are equivalent to those of bank 00. Since the ROM area in bank FF exceeds 48 Kbytes, however, the mirror image of all the data in the ROM area cannot be reproduced in bank 00.
 - When the C compiler small model is used, the data table mirror image can be shown at "008000_H to 00FFFF_H" by storing the data table at "FF8000_H to FFFFFF_H". Therefore, data tables in the ROM area can be referred without declaring the far addressing with the pointer.

■ F²MC-16L CPU PROGRAMMING MODEL


• Dedicated register

• General purpose registers

· Processor status

FU

■ I/O MAP

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value			
00000н	PDR0	Port 0 Data Register	R/W	Port 0	XXXXXXXXB			
000001н	PDR1	Port 1 Data Register	R/W	Port 1	XXXXXXXXB			
000002н	PDR2	Port 2 Data Register	R/W	Port 2	XXXXXXXXB			
00003н		Prohibited						
000004н	PDR4	Port 4 Data Register	R/W	Port 4	XXXXXXXXB			
000005н	PDR5	Port 5 Data Register	R/W	Port 5	XXXXX _В			
00006н	PDR6	Port 6 Data Register	R/W	Port 6	XXXXXXXXB			
000007н to 00000Fн		Prohibited						
000010н	DDR0	Port 0 Direction Register	R/W	Port 0	00000000 _B			
000011н	DDR1	Port 1 Direction Register	R/W	Port 1	00000000 _B			
000012н	DDR2	Port 2 Direction Register	R/W	Port 2	00000000 _B			
000013н		Prohibite	d					
000014н	DDR4	Port 4 Direction Register	R/W	Port 4	00000000 _B			
000015н	DDR5	Port 5 Direction Register	R/W	Port 5	00000 _В			
000016н	DDR6	Port 6 Direction Register	R/W	Port 6	00000000 _B			
000017н to 00001Ан		Prohibited						
00001Bн	ODR4	Port 4 Output Pin Register	R/W	Port 4 (Open-drain control)	000000000			
00001Cн	RDR0	Port 0 Pull-up Resistance Register	R/W	Port 0 (PULL-UP)	00000000 _B			
00001Dн	RDR1	Port 1 Pull-up Resistance Register	R/W	Port 1 (PULL-UP)	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{B}$			
00001Eн		Prohibite						
00001Fн		TOMBLE	,u					
000020н	SMR0	Serial Mode Register 0	R/W		$0\ 0\ 1\ 0\ 0\ 0\ 0_{B}$			
000021н	SCR0	Serial Control Register 0	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 0\ 0_B$			
000022н	SIDR0	Serial Input Data Register 0	R	UART0	XXXXXXXX			
0000228	SODR0	Serial Output Data Register 0	W		ХЛЛЛЛЛЬ			
000023н	SSR0	Serial Status Register 0	R/W		0000100 _B			
000024н	UTRLR0	UART Prescaler Reload Register 0	R/W	Communication	00000000 _B			
000025н	UTCR0	UART Prescaler Control Register 0	R/W	Prescaler (UART0)	0000-000в			
000026н	SMR1	Serial Mode Register 1	R/W		$0\; 0\; 1\; 0\; 0\; 0\; 0\; 0_{B}$			
000027н	SCR1	Serial Control Register 1	R/W]	00000100 _B			
000028н	SIDR1	Serial Input Data Register 1	R	UART1	XXXXXXXX			
UUUUZOH	SODR1	Serial Output Data Register 1	W	1	ΛΛΛΛΛΛΒ			
000029н	SSR1	Serial Status Register 1	R/W		0000100 _B			

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
00002Ан	UTRLR1	UART Prescaler Reload Register 1	R/W	Communication	00000000
00002Вн	UTCR1	UART Prescaler Control Register 1	R/W	Prescaler (UART1)	0000-000в
00002Сн		l		1	1
to		Prohibited			
00003Вн				•	
00003Сн	ENIR	DTP/Interrupt Enable Register	R/W		00000000
00003Dн	EIRR	DTP/Interrupt source Register	R/W	DTP/External	00000000
00003E н	ELVR	Request Level Setting Register Lower	R/W	interrupt	00000000
00003F н		Request Level Setting Register Upper	R/W		00000000
000040н					
to		Prohibited			
000045н	55000				
000046н	PPGC0	PPG0 Operation Mode Control Register	R/W	PPG ch.0	0X0 0 0XX1в
000047н	PPGC1	PPG1 Operation Mode Control Register	R/W	PPG ch.1	0X0 0 0 0 0 1 _B
000048н	PPGC2	PPG2 Operation Mode Control Register	R/W	PPG ch.2	0Х0 0 0ХХ1в
000049н	PPGC3	PPG3 Operation Mode Control Register	R/W	PPG ch.3	0Х00001в
00004Ан		Prohibited			
00004Вн					
00004Сн	PPG01	PPG0 and PPG1 Output Control Register	R/W	PPG ch.0/ch.1	0 0 0 0 0 0 0XX _B
00004Dн		Prohibited			
00004Eн	PPG23	PPG2 and PPG3 Output Control Register	R/W	PPG ch.2/ch.3	$0\ 0\ 0\ 0\ 0\ 0\ XX_B$
00004F н				·	
to 000057н		Prohibited			
000058н	SMCS	Carial Made Control Status Desister	R/W		XXXX0 0 0 0 _B
000059н	SINCS	Serial Mode Control Status Register	H/VV	Extended Serial	0000010в
00005Ан	SDR	Serial Data Register	R/W	- I/O	XXXXXXXXB
00005Вн	SDCR	Communication Prescaler Control Register	R/W	Communication Prescaler	0ХХХ0 0 0 0в
00005Сн	DWOOD				00000000
00005Dн	PWCSR	PWC Control Status Register	R/W		0 0 0 0 0 0 0 X _B
00005Е н				16-bit	00000000 _B
00005Fн	PWCR	PWC Data Buffer Register	R/W	PWC Timer	00000000 _B
000060н	DIVR	PWC Dividing Ratio Control Register	R/W	-	0 О _В
000061 н		Prohibited		1	
000062н					0 0 0 0 0 0 0 0 0 _B
000063н	TMCSR0	Timer Control Status Register	R/W		XXXX 0 0 0 0 _B
	TMR0	16-bit Timer Register Lower	R	16-bit Reload	XXXXXXXXB
000064н	TMRLR0	16-bit Reload Register Lower	W	Timer	XXXXXXXXB
	TMR0	16-bit Timer Register Upper	R	1	XXXXXXXXB
000065н	TMRLR0	16-bit Reload Register Upper	W	1	XXXXXXXXB
		5 11		1	(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000066н to 00006Ен		Prohibited		•	•
00006Fн	ROMM	ROM Mirroring Function Selection Register	w	ROM Mirror Function Selection Module	1 1 _в
000070н	IBSR0	I ² C Bus Status Register	R		00000000 _B
000071н	IBCR0	I ² C Bus Control Register	R/W		00000000 _B
000072н	ICCR0	I ² C Bus Clock Control Register	R/W	I ² C Bus Interface	XX 0 XXXXXB
000073н	IADR0	I ² C Bus Address Register	R/W		XXXXXXXXB
000074н	IDAR0	I ² C Bus Data Register	R/W		XXXXXXXXB
000075н to 00009Ан		Prohibited			
00009Вн	DCSR	DMA Descriptor Channel Specification Register	R/W		000000000
00009Сн	DSRL	DMA Status Register Lower	R/W	μDMAC	00000000 _B
00009Dн	DSRH	DMA Status Register Upper	R/W		00000000 _B
00009Ен	PACSR	Program Address Detection Control Status Register	R/W	Address Match Detection	000000000
00009Fн	DIRR	Delayed Interrupt Source generate/ release Register	R/W	Delayed Interrupt	0в
0000A0н	LPMCR	Low Power Consumption Mode Control Register	R/W	Low Power Consumption control circuit	00011000 _B
0000A1 н	CKSCR	Clock Selection Register	R/W	Clock	1111100 _B
0000А2н		Prohibited			
0000АЗн		Prohibited			
0000A4н	DSSR	DMA Stop Status Register	R/W	μDMAC	00000000B
0000А5н to 0000А7н		Prohibited	·		
0000A8H	WDTC	Watchdog Timer Control Register	R/W	Watchdog Timer	Х - ХХХ 1 1 1в
0000А9н	TBTC	Time-base Timer Control Register	R/W	Time-base Timer	1 0 0 1 0 0 _B
0000ААн		n na haite in an		1	1
0000ABH		Prohibited			
0000ACH	DERL	DMA Enable Register Lower	R/W		00000000
0000ADH	DERH	DMA Enable Register Upper	R/W	μDMAC	00000000
0000AEH	FMCS	Flash Memory Control Status Register	R/W	Flash Memory I/F	0 0 0 X 0 0 0 0 _B
0000AFн		Prohibited	•	1	

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000В0н	ICR00	Interrupt Control Register 00	R/W		00000111
0000B1н	ICR01	Interrupt Control Register 01	R/W		00000111
0000В2н	ICR02	Interrupt Control Register 02	R/W		00000111в
0000ВЗн	ICR03	Interrupt Control Register 03	R/W	-	00000111
0000B4н	ICR04	Interrupt Control Register 04	R/W	-	00000111
0000В5н	ICR05	Interrupt Control Register 05	R/W		00000111в
0000В6н	ICR06	Interrupt Control Register 06	R/W		00000111в
0000В7н	ICR07	Interrupt Control Register 07	R/W	Interrupt	00000111 _B
0000B8н	ICR08	Interrupt Control Register 08	R/W	Controller	00000111 _B
0000В9н	ICR09	Interrupt Control Register 09	R/W		00000111 _B
0000BAн	ICR10	Interrupt Control Register 10	R/W		00000111 _B
0000ВВн	ICR11	Interrupt Control Register 11	R/W		00000111 _B
0000ВСн	ICR12	Interrupt Control Register 12	R/W		00000111 _B
0000BDн	ICR13	Interrupt Control Register 13	R/W		00000111 _B
0000BEн	ICR14	Interrupt Control Register 14	R/W		00000111
0000BFн	ICR15	Interrupt Control Register 15	R/W	-	00000111
0000С0н	HCNT0	Host Control Register 0	R/W		0 0 0 0 0 0 0 0 0 _B
0000С1 н	HCNT1	Host Control Register 1	R/W	1	00000001 _B
0000С2н	HIRQ	Host Interruption Register	R/W		00000000 _B
0000СЗн	HERR	Host Error Status Register	R/W		00000011 _B
0000C4н	HSTATE	Host State Status Register	R/W		XX 0 1 0 0 1 0 _B
0000C5н	HFCOMP	SOF Interrupt FRAME Compare Reg- ister	R/W		000000000
0000С6н			R/W		00000000 _B
0000С7н	HRTIMER	Retry Timer Setting Register	R/W	USB HOST	00000000 _B
0000C8н			R/W		XXXXXX 0 0B
0000С9н	HADR	Host Address Register	R/W	-	X 0 0 0 0 0 0 0 _B
0000CAH	HEOF	EOF Setting Register	R/W		00000000 _B
0000CBH	HEOF		R/W		XX 0 0 0 0 0 0 _B
0000ССн		FRAME Sotting Register	R/W		00000000 _B
0000CDH	HFRAME	FRAME Setting Register	R/W	1	XXXXX 0 0 0 _B
0000CEH	HTOKEN	Host Token End Point Register	R/W	1	00000000 _B
0000CFн		Prohibited	1		
0000D0н			R/W		1010000 _B
0000D1н	UDCC	UDC Control Register	R/W	USB Function	0 0 0 0 0 0 0 0 0 _B
		1		L	(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000D2н	EP0C	EPO Control Pogiator	R/W		0100000
0000D3н	EPUC	EP0 Control Register	R/W		XXXX 0 0 0 0 _B
0000D4н		ED1 Control Degister	R/W		0 0 0 0 0 0 0 0 0 _B
0000D5н	EP1C	EP1 Control Register	R/W		01100001в
0000D6н		EPO Control Dogistor	R/W		0100000
0000D7н	EP2C	EP2 Control Register	R/W		01100000в
0000D8н	EP3C	EP3 Control Register	R/W		0100000
0000D9н	EF30		R/W		01100000в
0000DAн	EP4C	EP4 Control Pogiator	R/W		0100000
0000DBH	EF40	EP4 Control Register	R/W		01100000в
0000DCн	EP5C	EP5 Control Register	R/W		0100000в
0000DDH	EFSC	EFS Control Register	R/W		01100000в
0000DEн	TMSP	Time Stown Beginter	R		00000000 _B
0000DFн	TNOF	Time Stamp Register	R	-	XXXXX0 0 0B
0000E0н	UDCS	UDC Status Register	R/W		XX0 0 0 0 0 0 _B
0000E1н	UDCIE	UDC Interrupt Enable Register	R/W		00000000 _B
0000E2н	EP0IS	EP0I Status Register	R/W		XXXXXXXXB
0000E3н	EF013	EFUI Status negister	R/W		1 0 XXX 1 XX _в
0000E4н	EP0OS	EP0O Status Register	R/W, R	USB Function	0 XXXXXXXB
0000E5н	LI 003		R/W		100XX000 _B
0000E6н	EP1S	EP1 Status Register	R		XXXXXXXXB
0000E7н	LI IO		R/W		100000XB
0000E8н	EP2S	EP2 Status Register	R		XXXXXXXXB
0000E9н	EI 20		R/W		10000000 _B
0000EAн	EP3S	EP3 Status Register	R		XXXXXXXXB
0000EBн	LI 55		R/W		10000000
0000ECн	EP4S	EP4 Status Register	R		XXXXXXXXB
0000EDн			R/W		10000000
0000EEн	EP5S	EP5 Status Register	R		XXXXXXXXB
0000EFн	LI 55		R/W		10000000
0000F0н	EP0DT	EP0 Data Register	R/W		XXXXXXXXB
0000F1 н	LIUDI		R/W		XXXXXXXXB
0000F2н	EP1DT	EP1 Data Register	R/W	-	XXXXXXXXB
0000F3н			R/W		XXXXXXXXB
0000F4н	EP2DT	EP2 Data Register	R/W]	XXXXXXXXB
0000F5н			R/W	-	XXXXXXXXB
0000F6н	EP3DT	EP3 Data Register	R/W		XXXXXXXXB
0000F7н			R/W		XXXXXXXXB
0000F8н	EP4DT	EP4 Data Register	R/W]	XXXXXXXXB
0000F9н			R/W		XXXXXXXXB

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000FAH	EP5DT	EB5 Data Pagiatar	R/W	USB Function	XXXXXXXXB
0000FBH	EFSDI	EP5 Data Register	R/W		XXXXXXXXB
0000FCн to 0000FFн		Prohibited	b		
000100н to 001100н		RAM Area	a		
001FF0н		Program Address Detection Register ch.0 Lower	R/W		XXXXXXXX
001FF1н	PADR0	Program Address Detection Register ch.0 Middle	R/W	Address Match Detection	XXXXXXXX
001FF2н		Program Address Detection Register ch.0 Upper	R/W		XXXXXXXX
001FF3⊦		Program Address Detection Register ch.1 Lower	R/W		XXXXXXXX
001FF4⊦	PADR1	Program Address Detection Register ch.1 Middle	R/W		XXXXXXXX
001FF5н		Program Address Detection Register ch.1 Upper	R/W		XXXXXXXX
007900н	PRLL0	PPG Reload Register Lower ch.0	R/W	PPG ch.0	XXXXXXXXB
007901н	PRLH0	PPG Reload Register Upper ch.0	R/W		XXXXXXXXB
007902н	PRLL1	PPG Reload Register Lower ch.1	R/W	PPG ch.1	XXXXXXXXB
007903н	PRLH1	PPG Reload Register Upper ch.1	R/W	- PPG ch.1	XXXXXXXXB
007904н	PRLL2	PPG Reload Register Lower ch.2	R/W	PPG ch.2	XXXXXXXXB
007905н	PRLH2	PPG Reload Register Upper ch.2	R/W	- FFG cll.2	XXXXXXXXB
007906н	PRLL3	PPG Reload Register Lower ch.3	R/W	PPG ch.3	XXXXXXXXB
007907н	PRLH3	PPG Reload Register Upper ch.3	R/W		XXXXXXXXB
007908н to 00790Вн		Prohibited	b		
00790Сн	FWR0	Flash Memory Program Control Register 0	R/W	Flash	000000000
00790Dн	FWR1	Flash Memory Program Control Register 1	R/W	Flash	00000000
00790Ен	SSR0	Sector Conversion Setting Register	R/W	Flash	0 0 ХХХХХОв
00790Fн to 00791Fн		Prohibited	b		Continued

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
007920н	DBAPL	DMA Buffer Address Pointer Lower 8-bit	R/W		XXXXXXXXB
007921н	DBAPM	DMA Buffer Address Pointer Middle 8-bit	R/W		XXXXXXXXB
007922н	DBAPH	DMA Buffer Address Pointer Upper 8-bit	R/W		XXXXXXXXB
007923н	DMACS	DMA Control Register	R/W		XXXXXXXXB
007924н	DIOAL	DMA I/O Register Address Pointer Lower 8-bit	R/W	μDMAC	XXXXXXXXB
007925н	DIOAH	DMA I/O Register Address Pointer Upper 8-bit	R/W		XXXXXXXX
007926н	DDCTL	DMA Data Counter Lower 8-bit	R/W		XXXXXXXXB
007927н	DDCTH	DMA Data Counter Upper 8-bit	R/W		XXXXXXXXB
007928н to 007FFFн		Prohibited		·	

- Explanation on read/write
- R/W : Readable and Writable
- R : Read only
- W : Write only

• Explanation of initial values

- 0 : Initial value is "0".
- 1 : Initial value is "1".
- X : Initial value is undefined.
- : Initial value is undefined (None).

Note : No I/O instruction can be used for registers located between 007900H and 007FFFH.

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	El ² OS support	μ DMAC	Int	terrupt	vector		pt control gister	Priority
	support		Num	ber*1	Address	ICR	Address	
Reset	×	×	#08	08н	FFFFDC H			High
INT 9 instruction	×	×	#09	09н	FFFFD8H			
Exceptional treatment	×	×	#10	0Ан	FFFFD4H			Ī
USB Function1	×	0, 1	#11	0Вн	FFFFD0H	ICR00	0000000	
USB Function2	×	2 to 6*2	#12	0Сн	FFFFCC _H	ICRUU	0000В0н	
USB Function3	×	×	#13	0Dн	FFFFC8H	ICR01	0000P1	
USB Function4	×	×	#14	0Ен	FFFFC4H	ICRUI	0000B1н	
USB HOST1	×	×	#15	0 F н	FFFFC0H		0000000	
USB HOST2	×	×	#16	10 н	FFFFBC H	ICR02	0000В2н	
I ² C ch.0	×	×	#17	11 н	FFFFB8H		0000000	
DTP/External interrupt ch.0/ch.1	0	×	#18	12н	FFFFB4H	ICR03	0000ВЗн	
No			#19	13 н	FFFFB0H		0000004	
DTP/External interrupt ch.2/ch.3	0	×	#20	14 н	FFFFACH	ICR04	0000В4н	
No			#21	1 5н	FFFFA8 _H		0000B5н	
DTP/External interrupt ch.4/ch.5	0	×	#22	16 н	FFFFA4 _H	ICR05		
PWC/Reload timer ch.0		14	#23	17 н	FFFFA0H		0000В6н	
DTP/External interrupt ch.6/ch.7		×	#24	18 н	FFFF9CH	ICR06		
No			#25	19 н	FFFF98H		0000B7н	
No			#26	1А н	FFFF94H	ICR07		
No			#27	1 Вн	FFFF90H		0000000	
No			#28	1Сн	FFFF8CH	ICR08	0000B8н	
No			#29	1Dн	FFFF88H		0000000	
PPG ch.0/ch.1	×	×	#30	1Ен	FFFF84H	ICR09	0000В9н	
No			#31	1Fн	FFFF80H	10010	0000004	
PPG ch.2/ch.3	×	×	#32	20н	FFFF7CH	ICR10	0000ВАн	
No			#33	21н	FFFF78н	10014	0000000	
No			#34	22н	FFFF74 _H	ICR11	0000ВВн	
No	—		#35	23н	FFFF70H		0000000	
No	—		#36	24н	FFFF6CH	ICR12	0000BCн	
UART (Send completed) ch.0/ch.1	0	13	#37	25н	FFFF68H		000000	
Extended serial I/O	×	9	#38	26н	FFFF64H	ICR13	0000BDн	
UART(Reception completed) ch.0/ch.1	O	12	#39	27н	FFFF60⊦	ICR14	0000ВЕн	
Time-base timer	×	×	#40	28н	FFFF5CH	1		V
Flash memory status	×	×	#41	29н	FFFF58H		000000	
Delay interrupt output module	×	×	#42	2Ан	FFFF54H	ICR15	0000BFн	Low

(Continued)

- Available. El²OS stop function provided (The interrupt request flag is cleared by the interrupt clear signal. With a stop request).
- \odot : Available (The interrupt request flag is cleared by the interrupt clear signal).
- \bigtriangleup : Available when any interrupt source sharing ICR is not used.
- \times : Unavailable
- *1 : If the same level interrupt is output simultaneously, the lower interrupt factor of interrupt vector number has priority.
- *2: Ch.2 and ch.3 can be used in USB HOST operation.
- Notes : If the same interrupt control register (ICR) has two interrupt factors and the use of the El²OS is permitted, the El²OS is activated when either of the factors is detected. As any interrupt other than the activation factor is masked while the El²OS is running, it is recommended that you should mask either of the interrupt requests when using the El²OS.
 - The interrupt flag is cleared by the El²OS interrupt clear signal for the resource that has two interrupt factors in the same interrupt control register (ICR).
 - If a resource has two interrupt sources for the same interrupt number, both of the interrupt request flags are cleared by the µDMAC interrupt clear signal. Therefore, when you use either of two interrupt factors for the DMAC function, another interrupt function is disabled. Set the interrupt request permission bit to "0" in the appropriate resource, and take measures by software polling.

USB interrupt factor	Details
USB function 1	End Point 0-IN, End Point 0-OUT
USB function 2	End Point 1-5 *
USB function 3	SUSP, SOF, BRST, WKOP, COHF
USB function 4	SPIT
USB HOST1	DIRQ, CHHIRQ, URIRQ, RWKIRQ
USB HOST2	SOFIRQ, CMPIRQ

■ CONTENT OF USB INTERRUPTION FACTOR

* : End Point 1and 2 can be used in USB HOST operation.

USB

1. USB Function

The USB function is an interface supporting the USB (Universal Serial Bus) communications protocol.

Features of USB function

- Supports USB Full Speed
- Supports full speed (12 Mbps).
- The device status is auto-answer.
- Bit stripping, bit stuffing, and automatic generation and check of CRC5 and CRC16.
- Toggle check by data synchronization bit.
- Automatic response to all standard commands except Get/SetDescriptor and SynchFrame commands (these three commands can be processed the same way as the class vendor commands).
- The class vendor commands can be received as data and responded via firmware.
- Supports up to a maximum of six EndPoints (EndPoint0 is fixed to control transfer).
- Two built-in transfer data buffers for each end point (one IN buffer and one OUT buffer for end point 0).
- Supports automatic transfer mode for transfer data via DMA (except buffers for EndPoint0).

2. USB HOST

USB HOST provides minimal host operations required and is a function that enables data to be transferred between devices without PC intervention.

Features of USB HOST

- · Automatic detection of Low Speed/Full Speed transfer
- Low Speed/Full Speed transfer support
- · Automatic detection of connection and cutting device
- · Reset sending function support to USB-bus
- Support of IN/OUT/SETUP/SOF token
- In-token handshake packet automatic transmission (excluding STALL)
- Handshake packet automatic detection at out-token
- Supports a maximum packet length of 256 bytes
- Error (CRC error/toggle error/time-out) various supports
- Wake-Up function support

USB HOST HUB support • Bulk transfer 0 Control transfer \bigcirc Transfer Interrupt transfer Isochronous transfer Х Low Speed Transfer speed Full Speed 0 PRE packet support Х SOF packet support \bigcirc CRC error Toggle error \bigcirc Error Time-out 0 Maximum packet < receive data 0 Detection of connection and cutting of device 0 Transfer speed detection 0

• Restrictions on USB HOST

 \bigcirc : Supported

 \times : Not supported

* : Only supports full speed, and supports hubs up to one level.

■ SECTOR CONFIGURATION OF FLASH MEMORY

OCALEU III FFH DAI		o memory map	•							
Flash Memory	Flash Memory CPU address Writer address *									
	FF0000н	 70000н								
SA0 (4 Kbytes)		70FFFн								
SA1 (4 Kbytes)	FF1000н	71000н	ž							
SAT (4 KDyles)	FF1FFFH	71FFFн	Bai							
SA2 (4 Kbytes)		72000н								
SAZ (4 RDyles)	FF2FFFH	72FFFн	Ľ							
SA3 (4 Kbytes)	FF3000H	73000н								
040 (410)(03)	FF3FFFH	73FFFн								
SA4 (16 Kbytes)	FF4000н	74000н								
	FF7FFFH	77FFFн								
SA5 (16 Kbytes)	FF8000H	•								
SAS (10 Ruyles)	FFBFFFH	2BFFFн								
SA6 (4 Kbytes)	FFC000H	7С000н	ž							
SAG (4 KDyles)	FFCFFFH	2 7CFFFн	Ba							
SA7 (4 Kbytes)		7D000н	Upper Bank							
	FFDFFFH	DFFFH								
SA8 (4 Kbytes)	FFE000н	7Е000н								
	FFEFFFH	_ 7EFFFн								
SA9 (4Kbytes)	FFF000H	7F000н								
	FFFFFFH	¦ 7FFFFн								

512 Kbits flash memory is located in FF_H bank in the CPU memory map.

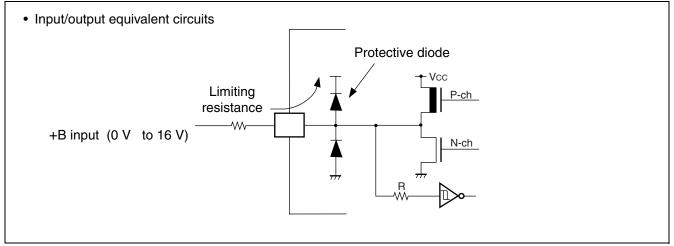
*: Flash memory writer address indicates the address equivalent to the CPU address when data is written to the flash memory using a parallel writer. Programming and erasing by the general-purpose parallel programmer are executed based on writer addresses.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Ra	ting	Unit	Remarks	
Farameter	Symbol	Min	Max	Unit	neillaiks	
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 4.0	V		
		Vss - 0.3	Vss + 4.0	V	*2	
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	N-ch open-drain (Withstand voltage I/O of 5 V)*3	
		- 0.5	Vss + 4.5	V	USB I/O	
Output voltage*1	Vo	$V_{\text{SS}} - 0.3$	Vss + 4.0	V	*2	
Oulput voltage	VO	- 0.5	Vss + 4.5	V	USB I/O	
Maximum clamp current		- 2.0	+2.0	mA	*4	
Total maximum clamp current	Σ		20	mA	*4	
"L" level maximum output	IOL1	_	10	mA	Other than USB I/O*5	
current	IOL2		43	mA	USB I/O*5	
"L" level average output	IOLAV1	_	4	mA	*6	
current	Iolav2		15/4.5	mA	USB-IO (Full speed/Low speed) *6	
"L" level maximum total output current	ΣΙοι		100	mA		
"L" level average total output current	ΣΙοιαν		50	mA	*7	
"H" level maximum output	Іон1		- 10	mA	Other than USB I/O*5	
current	Іон2	_	- 43	mA	USB I/O*5	
"H" lovel overege output	OHAV1		- 4	mA	*6	
"H" level average output current	Іонау2		-15/-4.5	mA	USB-IO (Full speed/Low speed) *6	
"H" level maximum total output current	ΣІон		- 100	mA		
"H" level average total output current	ΣΙοήαν	_	- 50	mA	*7	
Power consumption	Pd		270	mW		
Operating temperature	TA	- 40	+ 85	°C		
Storogo tomporaturo	Teta	- 55	+ 150	°C		
Storage temperature	Tstg	- 55	+ 125	°C	USB I/O	

*1 : The parameter is based on $V_{SS} = 0.0 V$.


*2 : VI and Vo must not exceed Vcc + 0.3 V. However, if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*3 : Applicable to pins : P60 to P67, UTEST

(Continued)

- *4 : Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P40 to P47, P50 to P54
 - Use within recommended operating conditions.
 - Use at DC voltage (current)
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Note that analog system input/output pins other than P60 to P67, DVP, DVM, HVP, HVM, UTEST, HCON

• Sample recommended circuits:

- *5 : A peak value of an applicable one pin is specified as a maximum output current.
- *6 : The average output current specifies the mean value of the current flowing in the relevant single pin during a period of 100 ms.
- *7: The average total output current specifies the mean value of the currents flowing in all of the relevant pins during a period of 100 ms.
- WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

 $(V_{SS} = 0.0 V)$

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Symbol	Min	Max	Unit	neillaiks
		3.0	3.6	V	At normal operation (When using USB)
Power supply voltage	Vcc	2.7	3.6	V	At normal operation (When not using USB)
		1.8	3.6	V	Hold state of stop operation
	VIH	0.7 Vcc	Vcc + 0.3	V	CMOS input pin
	VIHS1	0.8 Vcc	Vcc + 0.3	V	CMOS hysteresis input pin
Input "H" voltage	VIHS2	0.8 Vcc	Vss + 5.3	V	N-ch open-drain (Withstand voltage I/O of 5 V)*
	VIHM	V cc - 0.3	Vcc + 0.3	V	MD pin input
	VIHUSB	2.0	Vcc + 0.3	V	USB pin input
	VIL	Vss - 0.3	0.3 Vcc	V	CMOS input pin
Input "L" voltage	VILS	Vss - 0.3	0.2 Vcc	V	CMOS hysteresis input pin
Input L voltage	VILM	Vss - 0.3	Vss + 0.3	V	MD pin input
	VILUSB	Vss	0.8	V	USB pin input
Differential input sensitivity	VDI	0.2		V	USB pin input
Differential common mode input voltage range	Vсм	0.8	2.5	V	USB pin input
Operating	TA	- 40	+ 85	°C	When not using USB
temperature	IA	0	+ 70	°C	When using USB

* : Applicable to pins : P60 to P67, UTEST

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

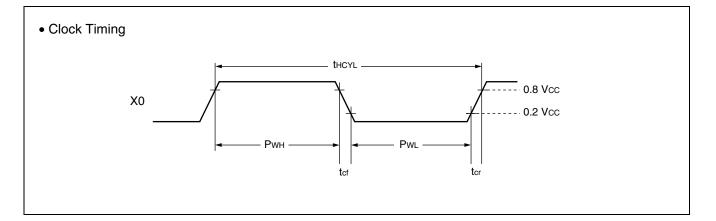
3. DC Characteristics

(Vcc = 3.3 V \pm 0.3 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)

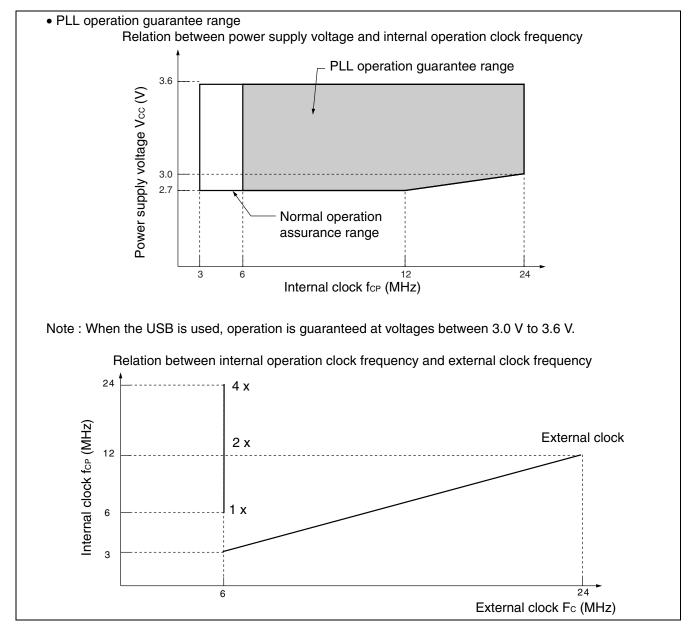
Deremeter	Sym-	Din nomo	Conditions		Value)	Unit	Domorko
Parameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
Output "H" voltage	Vон	Output pins other than P60 to P67, HVP, HVM, DVP, DVM	Іон = -4.0 mA	Vcc - 0.5		Vcc	V	
		hvp, hvm, dvp, dvm	$R_{\text{L}} = 15 \; k\Omega \pm 5\%$	2.8		3.6	V	
Output "L" voltage	Vol	Output pins other than HVP, HVM, DVP, DVM	IoL = 4.0 mA	Vss		Vss + 0.4	V	
voltage		hvp, hvm, dvp, dvm	R∟ = 1.5 kΩ ± 5%	0		0.3	V	
Input leak current	Iıı	Input pins other than P60 to P67, HVP, HVM, DVP, DVM	Vcc = 3.3 V, Vss < Vı < Vcc	- 10	_	+ 10	μA	
current		hvp, hvm, dvp, dvm		- 5		+ 5	μA	
Pull-up resistance	RPULL	P00 to P07, P10 to P17	$V_{CC} = 3.3 V,$ $T_A = +25 \ ^{\circ}C$	25	50	100	kΩ	
Open drain output leak current		P60 to P67		_	0.1	10	μA	
			Vcc = 3.3 V, Internal frequency 24 MHz, At normal operating		55	65	mA	MB90F337
			At USB operating (USTP = 0)	_	50	60	mA	MB90337
	Icc		V _{cc} = 3.3 V, Internal frequency 24 MHz, At normal operating		50	60	mA	MB90F337
Power			At non-operating USB (USTP = 1)	_	45	55	mA	MB90337
supply current	Iccs	Vcc	Vcc = 3.3 V, Internal frequency 24 MHz, At sleep mode	_	25	40	mA	
	la		Vcc = 3.3 V, Internal frequency 24 MHz, At timer mode	_	3.5	10	mA	
	Істѕ		Vcc = 3.3 V, Internal frequency 3 MHz, At timer mode	_	1.0	2.0	mA	
	Іссн		T _A = +25 °C, At stop mode	_	1	40	μA	

(Continued)

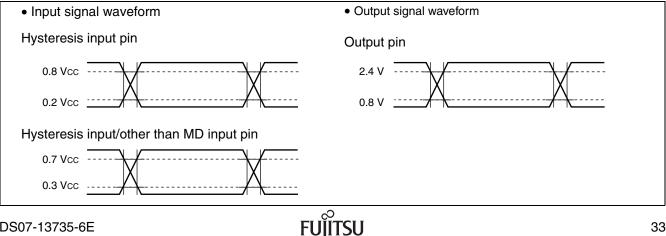
$(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}_{SS} = 0.3 \text{ V})$	0.0 V, $T_A = -40 \ ^{\circ}C$ to +85 $^{\circ}C$)
--	---


Parameter	Sym-	Pin name	Conditions		Value	Unit	Remarks	
Falametei	bol	Fiirnaine	Conditions	Min Typ Max		Offic	nemarks	
Input capacitance	(INI	Other than Vcc and Vss	_		5	15	pF	
Pull-up resistor	Rup	RST	_	25	50	100	kΩ	
Pull-down resistor	Rdown	MD2	Vcc = 3.0 V At T _A = +25 °C	25	50	100	kΩ	MB90337
USB I/O output impedance	Zusb	DVP, DVM HVP, HVM	_	3		14	Ω	

Note : P60 to P67 are N-ch open-drain pins usually used as CMOS.

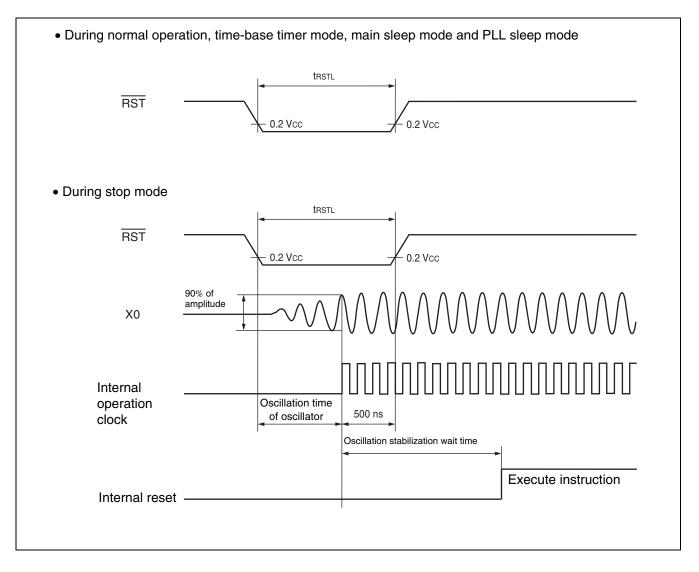

4. AC Characteristics

(1) Clock input timing


				(-,	-0.0 v ; $18 - 40$ e to 100 e)
Parameter	Sym-	Pin		Value		Unit	Remarks
Falameter	bol	name	Min	Тур	Max	Unit	nemarks
Clock frequency	fсн	X0, X1		6		MHz	When oscillator is used
Clock liequency	ТСН	AU, AT	6	_	24	MHz	External clock input
Clock cycle time	thcyl	X0, X1		166.7		ns	When oscillator is used
	LHCYL	AU, AT	166.7	_	41.7	ns	External clock input
Input clock pulse width	Р _{wн} Pw∟	X0	10		_	ns	A reference duty ratio is 30% to 70%.
Input clock rise time and fall time	tcr tcf	X0			5	ns	At external clock
Internal operating clock frequency	fср	_	3		24	MHz	When main clock is used
Internal operating clock cycle time	t c₽		42		333	ns	When main clock is used

(Vcc = 3.3 V \pm 0.3 V, Vss = 0.0 V, TA = -40 °C to +85 °C)

The AC standards provide that the following measurement reference voltages.



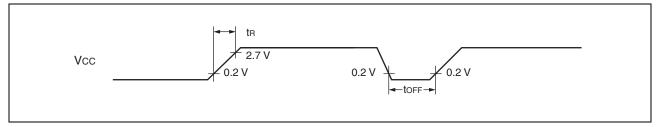
(2) Reset

(Vcc = 3.3 V \pm 0.3 V, Vss = 0.0 V, TA = -40 °C to +85 °C)

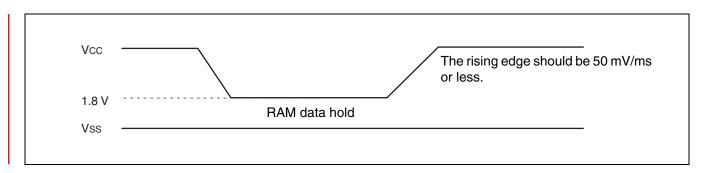
Parameter	Sym-	Pin	Conditions	Value		Unit	Remarks
Farameter	bol	name	Conditions	Min	Max	Unit	neillaiks
Reset input time	trstl	RST	_	500		ns	At normal operating, At time base timer mode, At main sleep mode, At PLL sleep mode
				Oscillation time of oscillator* + 500 ns		μs	At stop mode

* : Oscillation time of oscillator is the time that the amplitude reaches 90 %. It takes several milliseconds to several dozens of milliseconds on a crystal oscillator, several hundreds of microseconds to several milliseconds on a ceramic oscillator, and 0 milliseconds on an external clock.

(3) Power-on reset


 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Din namo	Conditions	Va	lue	Unit	Remarks	
Falameter	Symbol		Conditions	Min	Max	Unit	nemarks	
Power supply rising time	tR	Vcc		0.05	30	ms		
Power supply shutdown time	toff	Vcc		1		ms	Waiting time until power-on	

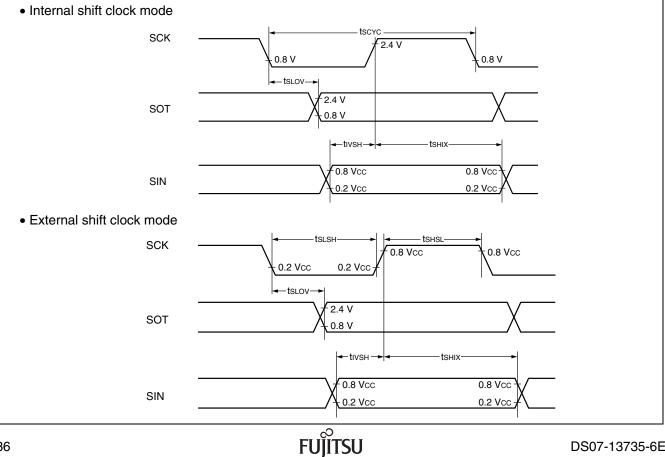

Notes : • Vcc must be lower than 0.2 V before the power supply is turned on.

• The above standard is a value for performing a power-on reset.

• In the device, there are internal registers which is initialized only by a power-on reset. When the initialization of these items is expected, turn on the power supply according to the standards.

Note : Sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during operation as illustrated below, voltage fluctuation should be minimized so that the voltage rises as smoothly as possible. When raising the power, do not use PLL clock. However, if voltage drop is 1 V/s or less, use of PLL clock is allowed during operation.

(4) UART0, UART1 I/O extended serial timing


$(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Value		Unit
Falameter			Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCKx		8 tcp		ns
$SCK \downarrow \to SOT$ delay time	tslov	SCKx SOTx	Internal shift clock	- 80	+ 80	ns
Valid SIN $ ightarrow$ SCK \uparrow	tıvsн	SCKx SINx	Mode output pin is $C_L = 80 \text{ pF} + 1 \text{ TTL}$	100		ns
$SCK \uparrow \rightarrow valid$ SIN hold time	tsнıx	SCKx SINx		60		ns
Serial clock H pulse width	tshsl	SCKx, SINx		4 tcp	_	ns
Serial clock L pulse width	tslsh	SCKx, SINx		4 tcp		ns
$SCK \downarrow \to SOT$ delay time	tslov	SCKx SOTx	External shift clock Mode output pin is	_	150	ns
Valid SIN $ ightarrow$ SCK \uparrow	tıvsн	SCKx SINx	$C_L = 80 \text{ pF} + 1 \text{ TTL}$	60		ns
$SCK \uparrow \rightarrow valid$ SIN hold time	tsнıx	SCKx SINx		60		ns

Notes : • Above rating is the case of CLK synchronous mode.

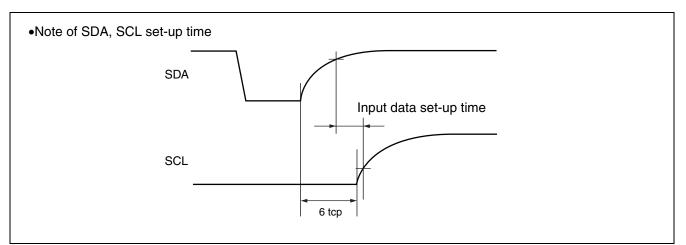
• CL is a load capacitance value on pins for testing.

• tcp is the machine cycle period (unit : ns) . Refer to " (1) Clock input timing".

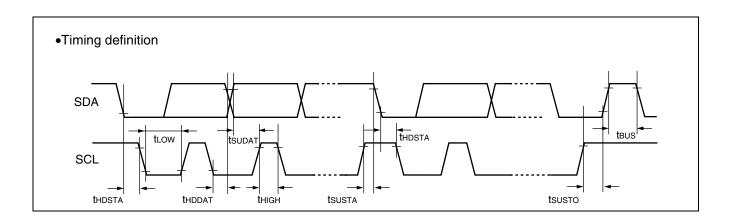
(5) I²C timing

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Paramatar	Symbol	Conditions	Va	lue	Unit
Parameter	Symbol	Conditions	Min	Max	Unit
SCL clock frequency	fsc∟		0	100	kHz
(Repeat) [start] condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t hdsta	Power-supply of external pull-up resistor at 5.0 V	4.0	_	μs
SCL clock "L" width	t∟ow	R = 1.2 kΩ, C = 50 pF ^{*2}	4.7	_	μs
SCL clock "H" width	t high	Power-supply of external pull-up resistor	4.0	_	μs
Repeat [start] condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t susta	at 3.6 V R = 1.0 kΩ, C = 50 pF*²	4.7		μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t hddat		0	3.45* ³	μs
Data setup time		Power-supply of external pull-up resistor at 5.0 V $f_{CP}^{*1} \le 20 \text{ MHz}, R = 1.2 \text{ k}\Omega, C = 50 \text{ pF}^{*2}$ Power-supply of external pull-up resistor at 3.6 V $f_{CP}^{*1} \le 20 \text{ MHz}, R = 1.0 \text{ k}\Omega, C = 50 \text{ pF}^{*2}$	250* ⁴		
SDA ↓ ↑ → SCL ↑	İ SUDAT	Power-supply of external pull-up resistor at 5.0 V fcP ^{*1} > 20 MHz, R = 1.2 k Ω , C = 50 pF ^{*2} Power-supply of external pull-up resistor at 3.6 V fcP ^{*1} > 20 MHz, R = 1.0 k Ω , C = 50 pF ^{*2}	200*4		ns
[Stop] condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t susto	Power-supply of external pull-up resistor at 5.0 V	4.0		μs
Bus free time between [stop] condition and [start] condition	teus	$\label{eq:result} \begin{array}{l} R = 1.2 \ \mathrm{k}\Omega, \ C = 50 \ \mathrm{p} \mathrm{F}^{*2} \\ Power-supply \ \mathrm{of} \ \mathrm{external} \ \mathrm{pull-up} \ \mathrm{resistor} \\ \mathrm{at} \ 3.6 \ V \\ R = 1.0 \ \mathrm{k}\Omega, \ C = 50 \ \mathrm{p} \mathrm{F}^{*2} \end{array}$	4.7		μs


*1 : fcP is internal operating clock frequency. Refer to "(1) Clock input timing".

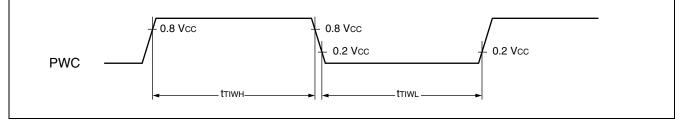
*2 : R and C are pull-up resistance of SCL and SDA lines and load capacitance.


*3 : The maximum thodat only has to be met if the device does not stretch the "L" width (tLow) of the SCL signal.

*4 : Refer to "• Note of SDA, SCL set-up time".

satisfied.

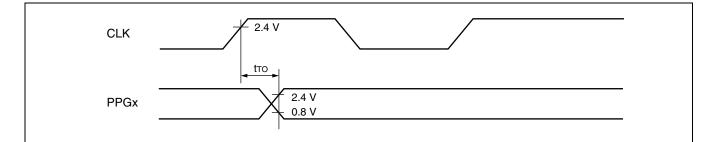
Note : The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor. Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be



(6) Timer Input Timing

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

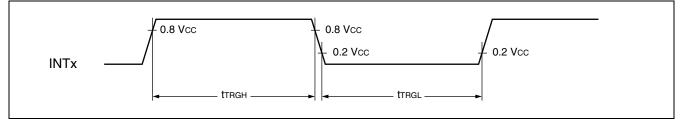
Parameter	Symbol	Pin name	in name Conditions		lue	Unit	
Farameter	Symbol	Pin name	Conditions	Min	Max	Onit	
Input pulse width	t⊤iwн t⊤iw∟	PWC		4 tcp	—	ns	


Note : t_{CP} is the machine cycle period (unit : ns) . Refer to " (1) Clock input timing".

(7) Timer output timing

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Value		Unit
Falameter	Farameter Symbol Fin name	Conditions	Min	Max	onne	
$CLK \uparrow \rightarrow T_{OUT}$ change time PPG0 to PPG3 change time	tто	PPGx	_	30		ns



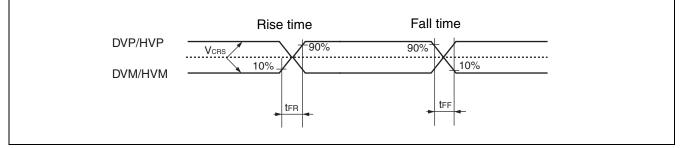
(8) Trigger Input Timing

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

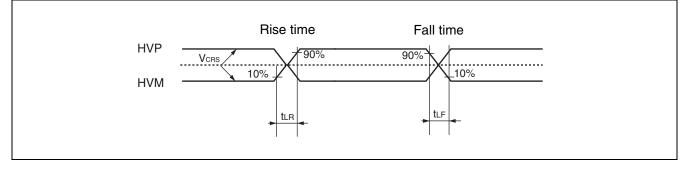
Parameter	Symbol	Din name	Conditions	Val	Value		Remarks
Falameter	Symbol		Min	Max	Unit	nemarks	
Input pulso width	t trgh	tтядн tтядL INTx		5 tcp	—	ns	At normal operating
Input pulse width	t trgl				1	_	μs

Note : tcp is the machine cycle period (unit : ns) . Refer to " (1) Clock input timing".

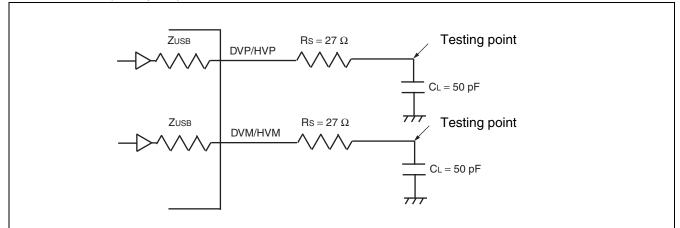
IITSU

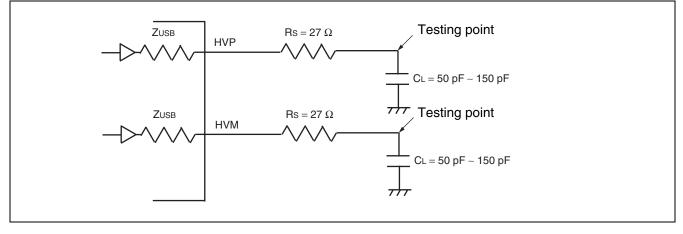

FU

5. USB characteristics


			(Vcc = 3.3 V	V \pm 0.3 V, V	′ss = 0.0	V, T _A = 0 °C to +70 °C)
Parameter	Symbol	Sym-	Value		Unit	Remarks
Falameter	Symbol	bol	Min	Max	Unit	nemarks
	Input High level voltage	VIH	2.0	—	V	
Input	Input Low level voltage	Vı∟	—	0.8	V	
characteristics	Differential input sensitivity	VDI	0.2		V	
	Differential common mode range	Vсм	0.8	2.5	V	
	Output High level voltage Output Low level voltage		2.8	3.6	V	Іон = -200 μА
			0.0	0.3	V	IoL = 2 mA
	Cross over voltage	VCRS	1.3	2.0	V	
	Rise time	trr	4	20	ns	Full Speed
Output		t _{LR}	75	300	ns	Low Speed
characteristics	Fall time	tff	4	20	ns	Full Speed
		tlf	75	300	ns	Low Speed
	Rising/falling time matching		90	111.11	%	(Tfr/Tff)
			80	125	%	(Tlr/Tlf)
Output impedance		Zdrv	28	44	Ω	Including Rs = 27 Ω
Series resistance		Rs	25	30	Ω	Recommended value = 27 Ω at using USB*

* : Arrange the series resistance Rs values in order to set the impedance value within the output impedance ZSRV.

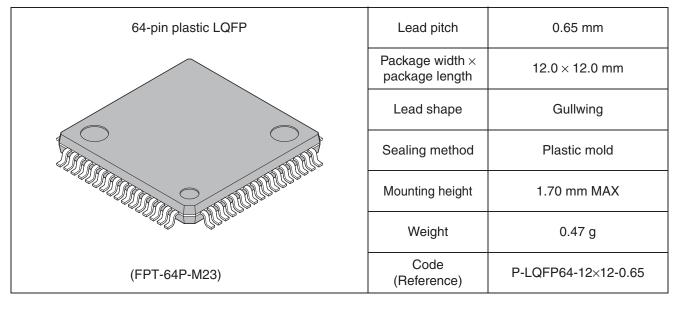

• Data signal timing (Full Speed)

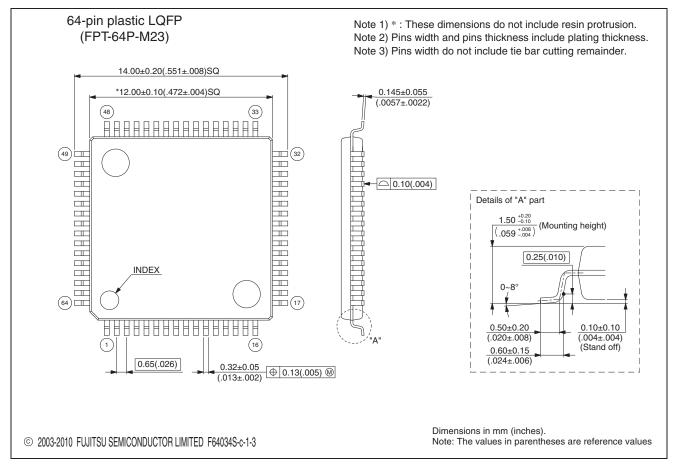

• Data signal timing (Low Speed)

• Load condition (Full Speed)

• Load condition (Low Speed)

Parameter	Condition		Value		Unit	Remarks
Farameter	Condition	Min	Тур	Max	Unit	nemarks
Sector erase time (4 Kbytes sector)		—	0.2	0.5	s	Excludes 00H programming prior to erasure.
Sector erase time (16 Kbytes sector)	$T_{A} = +25 \ ^{\circ}C$ $V_{CC} = 3.0 \ V$		0.5	7.5	s	Excludes 00H programming prior to erasure.
Chip erase time			2.6		s	Excludes 00H programming prior to erasure.
Word (8 bits width) programming time			16	3600	μs	Except for over head time of system
Program/erase cycle		10000			cycle	
Flash data retention time	Average T _A = +85 °C	20			year	*

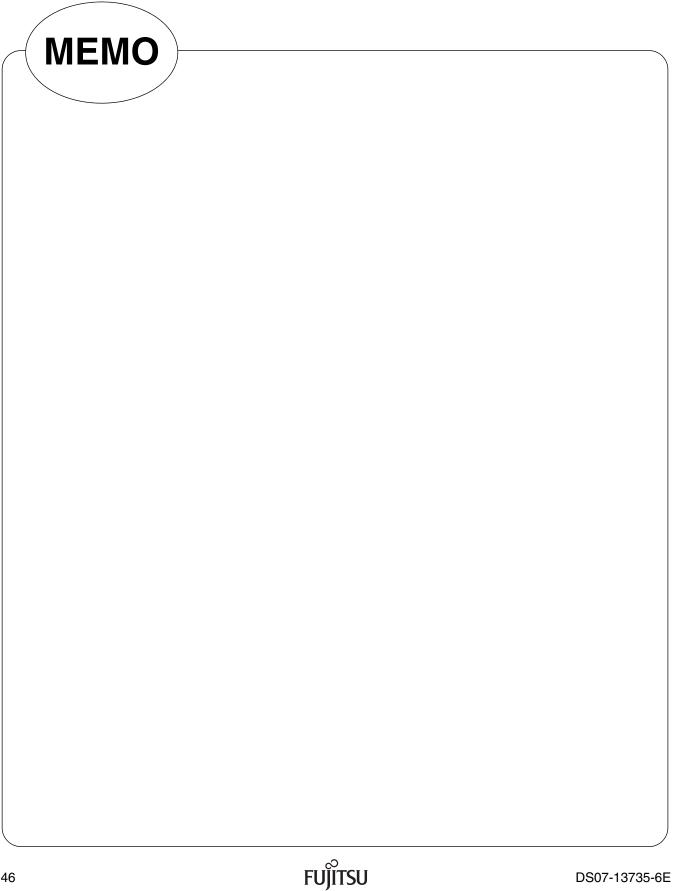

6. Flash memory write/erase characteristics


* : This value comes from the technology qualification. (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C)

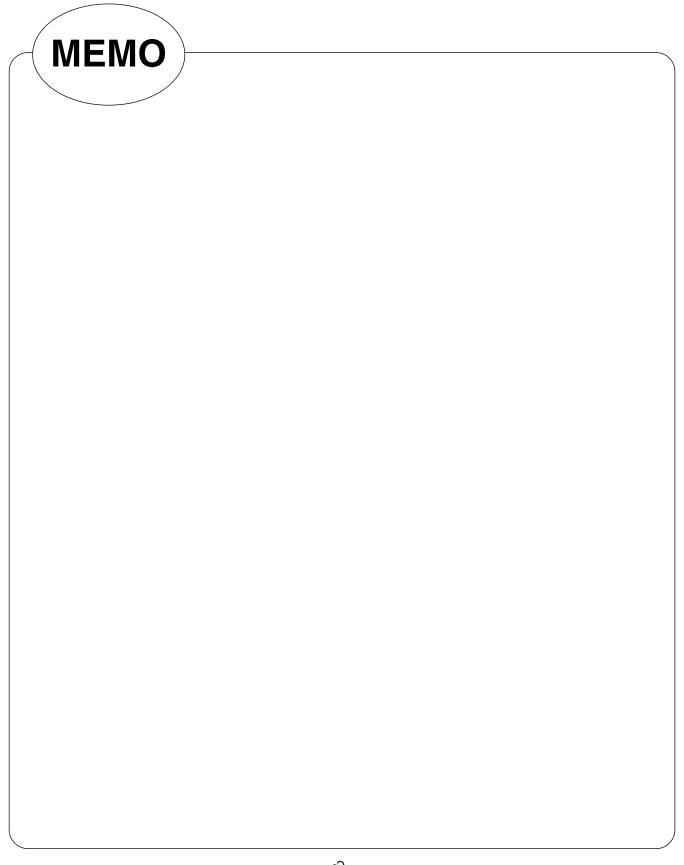
■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F337PMC MB90337PMC	64-pin plastic LQFP (FPT-64P-M23)	
MB90V330ACR	299-pin ceramic PGA (PGA-299C-A01)	For evaluation

■ PACKAGE DIMENSION



Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/


■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
35	 ELECTRICAL CHARACTERISTICS 4.AC Characteristics (3) Power-on reset 	Corrected as follows; Voltage of RAM data hold: 3.0 V \rightarrow 1.8 V

The vertical lines marked in the left side of the page show the changes.

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 *http://jp.fujitsu.com/fsl/en/*

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.